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SUMMARY

The electrostatic instability of an infinite electron beam pene-

. trating an infinite plasma is analyzed. The objective is to determine
the effect of beam-température upon the growth rate of the electrostatic

-7waves-(a'Gaussian velocity distribution is assumed).  In addition the

role of collisions within the plasma is explored.'

;"A conclusion of this study is that a high temperafure limit for the

‘beam'cah be défined'in'terms of the plasma frequencies of_the bean and"

.0f the plasma. At the high temperature 1limit, the plasma collisions can

guench the electrostatic instability; at lower temperatures, collisions

. tend to enhance the growth rate.

. The results presented here are based upon a numerical analysis of

the usual dispersion eqﬁation_that.is_qbtained_for this béam—plasma
‘system; .the numerical work wasrcérriéd:out:with the aid of a.Bufrbﬁghs

- 220 cdmputer_with-a progréminitten'in BAﬂGQL. In éddifiqh to the numeri-
_cal results, approximate_analytib:expressions.for_the"growth rate are

-derived for a number of cases of interest.

BETE



CONTENTS

SUMMARY. & » v o v o e e e e e

LIST OF ILLUSTRATIONS. + v i @ v s o o o 4 0 o « o = +
CLIST OF TABLES . & vov v'n v 0 0 o o s o v o o va o e s

I INTRODUCTION T

I1 THE DISPERSION EQUATION FOR

ELECTROSTATIC WAVES

ii

iwvo

Tiv

_ III APPROXIMATE SOLUTIONS . OF THE DISPERSION EQUATION. . . .
'A. The High-Temperature Limit . . . « « « v « & « .+ &
1. General . . . . 4 v ¢« v 4 o en .o e e e

2. ngh-Frequehcy Instabilities and
- Collisional Damping in the High- Temperature _
Limit o v v v 0 v e e e e e e e e e e e e

B. The Low-Temperature TAMIt. » 0 v s ne e e e e

1. General . . v . 4w .. ..

2. _ﬁigh-Frequency Oscillations.

3. Low-Frequeqcy'Oscillations.

-

Colidd

~C. - The Intermediate-Temperature'Beam.' .

1. High—Fréquency Waves‘(w W ) .

_ 2. _ Low- Frequency Waves (w << ) ; .

_D.-'_Summary of Approximate- Solutlons . .

IV NUMERICAL PROGRAM L A .

. A- MethOd . '-7. .‘. - - 'V .. .' L] .. ..V:‘ Ll L Ld

B.  _Numerical Resu1tS.:;:,:,__ S .

.V CONCLUDING REMARKS. . + « = o s o -4 & .
CREFERENCES '+ . v v v v v v a o s v o o o v s

12
13
o
16
17

17

20
22
-
23
"25.

26



ILLUSTRATIONS

Fig. 1
Fig. 2
. Fig. 3

Fig. 4

Table I

Growth Rate of Electrostatic Disability Where

@ = w2, w o=10% . L0 L L0 L

. b

Growth Rate of Electrostatic Disability Where -
. UJp =. 10 w

8
2 b--—~10|._-.-'-f.--|_--o

- Growth Rate of Electrostatic'Disability:Where

12 B
W =1 W = e s s s w4 e s s w e e e s
b o=, b _10 : ENRN

Growth R%te of Elegtrostatic Disability Where

o =10 ,w "—-'lo.---onu-u_o [ T R }
P - _ : : N

b

Table of-Approximate Solutions of the
Dispersion Equation. . . . &« & o o v o o & o &

iy

28
"29

= 30

21

-
P



' assumed to be

I INTRODUCTION

This report presents the results of ‘a numerical investigation of |

the electrostatic instability of a system that consists of a relativistic

-electron beam penetrating a plasma; Both the beam and'plasma are assumed

to be uniform and infinite in extent., The plasma is assumed to be dense

enough that colllslons between plasma electrons and other plasma par-

'_:tlcles may play an important role, but in other respects the plasma is

'cold"~-that is, the plasma velocity distribution is ig-

uored. - On the other hand, the beam is allowed to have a flnlte ve10c1ty

dlstrlbutlon——assumed here to be Gaussian--but all collisions between E

beam partlcles or between beam and plasma partlcles are ignored.

The phy51ca1 51tuat10n descrlbed above has been considered already

1-3%

in a pnumber of papers. The usual treatment provides a dispersion

relation for the response of the system to.small-scale disturbances,  but

this dlsper51on ‘equation does not appear to have been solved analytlcally,

.except in the limits of very hlgh or very low beam temperature. Here

some new analytic solutlons of the dlsper51on equatlon are given for the -

high and 1ntermed1ate temperature range, ‘but these results also do not

cover the full range of beam temperature. Therefore, in order to ex-
'plore more fully the effects of beam temperature upon the growth rate
 of an initial disturbance, we have resorted to numerical methods ~In-

" that part of the beam temperature range where appr0x1mate analytlc

solutlons ex1st the numerlcal and analytlc results agree qulte well

It 15 found that one ‘can obtaln from the d15pers1on equatlon a'
simple crlterlon for a hlgh temperature beam, such a beam is one 1n_.:

which low-frequency 050111at10ns are quenched, s0 that for a suff1c1ent1y

‘high beam temperature, growzng waves can exist only- at frequen01es very
'near to the plasma frequency. ThlS conclus1on is substantlated by the"ri"

'numerlcal work

- References are listed at the end of the report.
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In addition to the effects of beam temperature, the role of Lhe

"effective" collision frequency of the plasma particles is also explored

in the numerlcal work reported. here. It is found that at low beam tempera-

ture, collisions can enhance the growth rate of the low-frequency oscilla—

tions., On the other hand, in the high temperature limit, the high-

_frequency oscillations can be quenched by a sufficiently high COlllblOH

' frequency An approx1mate expression for the minimum colllslon fre-

quency required to. quench the high- frequency 1nstab111ty can be derlved
from the dispersion ‘equation; the numerlcal work 1nd1cates that thls.

derived expression is a_reasonably good approx1matlon.



II - THE DISPERSION EQUATION FOR ELECTROSTATIC WAVES

The dispersion equation with which we are concerned has heen de-

rived elsewhere,

179 e following aesumptlons and approx1mat10ns

1ntr1n51c to these derivations:

(Y

2)

- - (3)

(4)

(5)

- (6)
Under the foreg01ng approx1mat10ns

fsquare ve1001ty dlfierence u, and the average beam ve1001ty V

: plaema approximation).

~In the steady state the plasma is assumed to be

'unlform and 1nf1n1te in extent.

zlnmthe,steady.state the electron beam is assumed

- “to be uniform and infinite. However, it is

usnally assumed that the same dispersion equation

; holds to a good approximation for a uniform beam
.of finite cross- sectlon, prov1ded that the wave--'
“length of the 1nstab111ty is small compared to the

) beam radlus

Electron collisions within the plasma are taken into

_ consideration,-but other aspects of the plasma

velocity distribution are ignored (the "cold"

All steady-state. magnetlc fields are 1gnored in-

cludlng the self fleld of the beam.

Perturbatlons are con51dered in. the llnear approx1—

3mat10n, and ‘in ‘the form of a single Fourler com-

bd

- ponent, exp(1 k . r - iwt)., The wave number, k,’
~ is assumed to be real, so that any solution of the

dlsper51on equatlon w1th frequency W hav1ng a.

p051t1ve 1ma01nary part indicates grow1ng solutions.

~ The’ beam den51ty is assumed to be small compared

_W1th the den51ty of charged partlcles in the plasma.

3 :.

are

_ and assuming that the beam has.
a flnite Gaussian v31001ty distribution as- deflned by the root-mean-

‘one .
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‘can obtain a dispersion relation for the electrostatic waves of the form

v'2
' A '
(.Dz UJE- @ v’ exp 1—[12 dv .
. P
1 = - + J‘ : (1)
w : - w - - .
W(w + iv) om u3 2 k( kVO kv') _

where v is the effectlve collision frequency of the plasma electrons. -

~.The plasma frequency, wp, and the beam plasma frequency, wb’ are defined

in rationalized MKS units by

o
o

and wb = o R U (2)

with-

-
Il

1- V2P 2 E @

eAccording_to the formulation of Bludman, Watson, ahd Rosenbluth, :

an equation similar to Eg. (1) is obtained for the case of electrostatlc

. %
- waves that are in the beam dlrectlon, for waves at an arbltrary angle .
-“to the-beam ‘& more 1nvolved expre551on is obtalned whlch requires .

integration over the transverse velocity structure of the beam. On the _f“

other hand, in the formulation by, Ascoli 2'an equation similar to Eg.

LoQy is obtalned for waves at arbltrary angle to- the beam, pr0v1ded that
_._V and u are 1nterpreted as the average beam veloc1ty and beam veloc1ty

: spread respectlvely, in the d1rect10n of the wave. .-

See Eqs. {4, 10) and (4 11) on p. 754 of Ref. 1, Equatlon (1) can be

obtained :from. these equations after some algebralc manipulations for- the
. case of longltudlnal waves, (k _ 0) L SRR '



' The definition

For the numerical work it is convenient to introduce the new

variables

w - kV

ot

it

"]

=

j= N

1]
j

[l I o]

:_ so that Eq. (1)'can be written

| _ - o g o,
: - W W -
B S bf-z_e__t__d_t
o - w(w + iv) mT. .22 t -z '
ku -o

Now writing g f =1+

 _ahd Eq. (6) can be ﬁSed to rewrite Eq. (5) in the form.

1 = - - [l + ZZ] .
ST CUR A% ] u2k2_ L

(4)

5

(6)

-

(®

The integral Z(z) and its deri#ative havé”been published4 in tabuiar

_ 'to calculate Z(z) dlrectly

' form for values of the argument z = x + iy in the range 0 <x <10 and

L= 10 £y <'10. However, for work reported here,'lt was found adv1sable



For the numerical work it is convenient to introducc 'the new

" yariables’

\ . W - kY
O

v
e R @
" so -that Eq. (1) can be written'
. wz wi T t o a dat
L l=——F—— (5)
_ w(w + 1v) T k2 2 2 Y t -z
Now writing T E 5= 1+ E—%—Ei'it is readily shown that
R 1:'“}‘2 _- —-tgdt | |
. . e e | .
i I ——dt = 1 + _r — . . (6)-
.;7_'”__09 t.-z S -\,TT___OD t z . , ;
S o _ The definition _ .; . ) _ s
P _
{ 1 ‘o ;tz dqt . _ L i
. e ) .
= — [ £ Ct L (7
2=, WI Tz ST
=@
"and-Eq.'(G)_can'be used to rewrite Eq. (5) in the form
'wi wf}-f : PRI SR N
L=+ vy - 2 [1+ zZ] T @®.
" The 1ntegral Z(z) and its derlvatlve have been publlshed4 in. tabular
form for values of the argument Z =X + iy in: the range 0 sx = 10 and
- . -10 sy s 10 "However for work reported here, 1t “Was found adv1sable o
'3ﬂ(ﬁwag ) :' _to calculate Z(z) dlrectly. : ' '




IIT APPROXIMATE SOLUTIONS OF TIE DISPERSION EQUATION

Although this paper is concerned primarily with numerical solutions
of Eq. (8), the numerical procedure that is employed requires reasoﬁably
geod first'approximations to the solutien in order to obtain convergence
to that solution. 1In this seetion, some approximate analytic solutions.
_Qf the dispersion relation are obtained. 'The_nature ef the analytic

fsolutions'depends to a large extent upon the beam temperature. It was

found convenient for present purposes to define high- and low-temperature

limits in terms of the system parameters. Thus, in the first part of this
'-section, the high-temperature limit is defined, and approximate analytic
'solutions are obtained in this limit. Subsequently, the solutions at

low and intermediate temperatures are considered.

The analytic solutions obtained in the limits of high and low tem-
peratures are, in general, in quite close agreement with the numerical
results. At intermediate temperatures the situation is different, in
-that good analytic solutions are obtained for part qf this range only.

~In that part of the intermediate tempefeture range where analytic solu-
B tions are not obtained,:numerical results.are obtained more or less by:

trial and error.

A.. The High—Tempefature Limit
. 1. General

It is easy to show that for sufficiently hlgh beam temperature
the 1nf1n1te beam-plasma system cannot support growing waves at fre-
quen01es well below the plasma frequency. The 1mportant p01nt to be’

' made here is that this condition does: not depend upen the beam temperature
‘alone, but upon both the beam temperature and the ratlo of plasma fre—
'_quency to beam—plasma frequency.' In order to establlsh thls hlgh-

temperature crlterlon, let us define

. Ceee




and

Z = x -+ iy ) _
- . 2 | (10)

o
3 o p A%

Then taking real ahd imaginary parts of Eq.. (8), one obtains the two

equations

2 ' 2

- 0 . (12)

. W™ w : : : _
- P b [ | o
3 L w -]l - + w (1 + xX - y¥) - W (xY-l—yX)] =0 (11) -
P - 1 of ¢ @+ AP LT R | S
. _ v 2. _ _ _
. : é.'l'a-z'- wp wi : :
w, {1+ : + 5 |9 O+ v + w0+ xX -y =

:_ thation (11) can be rewritten

w | 22 [ P :
Ey 1 : S, vk P
xY - yvX T _(l + XX - yY) + ) 1 - 3 (13)
. g . . u)b . -wl 4 (wz + \)) )

' so that from Egs. (12)-and_(13)

o _.,wi T Cral : wz + v, —wi - _
L+ (L4 XX - V) + P = =0 . 4

'uz_kd .wi + (wz 3 v)z : _wz + w

It is now assumed that




2

(15)
(c) V<<
(d) wlmkvo
so that Egq. (14) can be rewritten, approximately,
wz o _ S
-1+22(1+xX—yY) —g . . (18)
' u k : w : S
1
Fﬁrthermore, in view of the assumptions of (15-a) and (15-d)
2 . N
g 1+xX—yYa-:-—pL . (17)
' w2 VZ
| b o .
i ' %
We make use of the condition
14 %K - y¥ <1, for®, >0 . - (18) -

Consequently,.for a beam-?lasma'system such that the ?ight—hand side of
Eg. (17) is much greater than unlty, Eq. (17) cannot be satisfied.HZWe'

1_'conclude ‘that the low temperature 1n5tab111t1es that sétisfy-the dis- =~

.. ‘persion equatlon and Egs. (15) do not ex;st at beam temperatures high

_ enough that

ThlS condltlon is obtalned by examination of the publlshed results of

Frled and’ Conte, Ref, 4. To facilitate use of this reference ‘“note- .
that 1 + xX - yY ==z Re(Z' ). o



" or

. f‘rﬂ“““ o IERT

u- '

—1 >> 1 . . 19
Vv . : (19)
o .

...‘
14
ol ®

The results of our numerical investigation verlfy the validity of thls

criterion. When the condition imposed by Eq. (19) is satlsfled .in—

' stab111t1es are found in only a Very narrow range of frequenc1es in the

v1c1n1ty of the plasma frequency, wp.

2. High—Frequency Instabilities and Collisional Damping

in the High-Temperature Limit

At frequencies near the plasmé frequencj, wp,'an unstable mode

E does exist in the high temperatureilimit.. Consider now the question of

collisional damping of this unstable mode. TFirst, let us assume the

conditions:

{a) S Wy KV W

2

17 %™ Tp
| | - (20)
o vy
and look for conditions such that
w, -0 . ey

. According to thé:assumptions'of_Eqs. (20)_and 21, Fg. (12) can be re-

 ;written_

S + W XY(x) ~0 . - g "(22) .
2 - 2.2 177 T o . .
we. o 0K S : S i
-1 )
2 5 G o
S b. 3 s R N
. .“ éf*ﬁ"g—g W XY(X) IR Ay :rﬁ,(ZS)l




. : "
__It can be shown that

: | . , :
Y(x} = yfme * ' (24)
" so that Eqm'(zs) can be written
. -\,n wi wi xe x : : :
Vo= 55 5 . ' - (25)
o - u k ' :
D

Theﬁright—hand'side of this eduation.has a maximum when

2

: : f.ui . 3w; . _ o
2 G-z @ -ky) =0 L (26)

k

~According to- assumptlon (20-a), the last term of Eq._(26) can he neglected

S Then, approx1mately

jwhere the negatlve root is chosen in.order to satlsfy Eq. (22) Thus,

: sk
©to damp the fastest grow1ng 1nstab111ty we requlre a colllslon rate

S e

e . _ . o 5 B o
. See, for example, Fried“and Conte, Ref. 4. Note that the term Y(x),

. as- deflned by Eq. (9), is not the same as Y{(x) deflned on p. 3 .of Ref 4..

Thls result agrees with Ascoli (Ref 2), but the authors of Ref 1 ob-
“tain a somewhat dlfferent result {see note added in. proof on p. 757 of :
‘Ref . 1) : : - o

10
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‘_1Using Eqs._(33) ‘and: (32), we get

The numefical work verifies that Eq. (28) providcs'a quite good estimate-'
of the minimum collision rate for damping. '
Now consider the instability growth rate when the collision

rate is much 1ess than the damplng rate of FEq. (28). Let us assume the

'condltlons'

o™~ p c
_ o - (29}
(b) v <<_w2 < wl .
From Eq. (11) we get the approximate condition
LA uE S R
1+ xX = y¥ == (&Y +y0 - . . (30)
.- Using Eq. (30) in_Eq. (12),
B A .t
20 = —— (XY + yX) 0. + — (31)
2 22 1 W :
uk : 1
or 7
W s~ ——=e (XY + yX) . L (32)
2 2 2 . . T _ U

‘We now assume that (x, y) are small and use the series expan51on4 for thes':

functlon Z(z) to obtaln approx1mately

%(xv + _yx) zy° -\/ (x _— —)y - %P (83

 ,yg + 2by - x2 = 0 - T (34)




'Thus,-we obtain

. B. " The Low-Temperature Limit

where - o 2.

. : Sfwog ' :
b= :MCEE(XZ S Y ey el . (385)

B =

y=-b+/b° + 2 =~ = . - (36).

'Wlth the use of the extremal value for X glven by Eq. (27) the growth

rate is

= i- o . . C - _
== —L “ i IR 7
w i _ S 37

Provided that Egq. (37) is con51stent w1th the 1n1t1al assumptlon of small
‘y, this equation gives a good estlmate of the growth rate at high beam
 'temperature. This is substantlated by the numer1ca1 work. In the event

. that Eq. (37) violates the assumptlon of small y, the hlgh frequency,.

high- temperature growth rate can be estlmated by the procedure for low-

. temperature beams,

1,  General

The arguments 1ead1ng to the deflnltlon of a hlgh temperature

"'__11m1t Eq. (19), pr0v1de also a ba81s for defining the low—temperature _::

11m1t, that is, a cold beam is one that satlsfles the condltlon

R )< ERIE I S (38) -

“In this case, approximate analytic Solutions of the dispersion equation -

12




can be obtained that are in essential agreement with numerical results. .
Although these results are derived in other reports,l'a they are.derived

here, also, for completeness.

- 2. - High-Frequency Oscillations

Consider the case that
S W = = . (1)
(a} o= ka b
' W o<<w, T 9)
() w, << o (39)

< W )
e v 1

For the case of a "cold" beam, we anticipate that x >> 1l and y >> 1, In

_ this_situation-thé asymptotic expansion for the function Z(z) can be used,

This is given by%
@) =S|l =+ i, y>0 . (40)
A 2 : : ‘
To this approximation = - R ' J :I}

XY +yX = T IR C5 ) N

' ACcordingito the_assumﬁtiOns of Eqs} (39) and (41);'and using-thez

Jépprdiimaté c0ndition of Eq. (30), Eq. {(12) can'bé'réwrittenf

2 .
w N

ib - Xy o
2 . 2 S

x2 + yz ' '

"Using'the.fepreSenfation w - kV6'= péi¢, Eq. (42) éan'be rewfittén o 3
v

" — = - D
Y (m +2) =%

13

-: ;'(42)ij ;:f- 

 @§{51#3_¢ cos @H:I::;_?::.-,_(43)_  o



- which has a maximum for tan @ - Qﬂw/ 3. Hence, the maximum growth rate

is given by

N ,372

2 7 2 16 . p b

which is_eaSilY.solved in two .cases:

w, >> v
2

B . - {a) . 3 pl.)— - (45) . .

. w. - =
() v>w: w =tz Vv

3. . Low-Frequency Oscillations

. . - _Assume for this case.fhat
W A kY << W
‘a) 17 kvé p

”';:'(b)' UJ2 < wl _. | _. ...(47).

L@ v i

;Then,'Eqs.,(ll) and (12) give, approximately,

W u
p
)
-bvb o

W

2

14

@ GD + —) =3 __wow - ;. (44)_:

=t xX -y -2 GYEyR) (48

S QR - gD - GYEYD L (49)



w qu

Eliminating the term I'rom these equations,

p
i)
bvﬁ

w

24+ ) (14 xX - yY) = - al-_-——l—— (xY + yX) . (50)

In view of the assumptions of Eq. (47), Eq. (50) give5'apperimate1y

Sy . : X :
| 24 o) (142X - y0) - —= (¥ +y0) (5D
R - z2f T B - -

which requires {1 + XX - y¥) >> - (x¥ + yX). - S (52) ;

Consequently, Eq. (48) can be rewritten

2
(S \ o : : -

1+ xX - yY ™~ «w< 1 (B3
o " \bo R

il

: _ 'for-thé low-temperature case. . Now by inspéction_ofnthe plotted fUnctions_'
'?.:'-j' 0 in Fried and Conte,4 it can be concluded.that Egs. (52) and (53) can be
- satisfied only under the condition = o

-x <1, y>1 . . -

..Cohsequéntiy,:we_can'usé the asymptotic expanéion.td”obtain

1 4oxx —'yY o

, "1?'7”(54)_ 
s yz) 2 R

' so that from Eq. (51)




yﬁ_- - O (ssay
L wp ! - ... co. -

or
®v) . _ - (55b)

To obtaih ¥, the asymptotic expanSiOH

XY 4 yX = o (56)

ol 2
. (x2 +'y2)

“ﬁm[N

P

‘can be used in conjunction with Eqs. (49) and (53), which give

2
5%} [43]
bk W

' o _ - wbvo _ml_

YYD =- Rt () = - 6D

"~ Then from EQS. (55), (56), and (57) are obtained the approximate results . -

W, > v, x = -

'GEIU‘E
<

v
V> W, x =

_ C{'; The Intermediate-Temperature Beam

" Consistent with-prévious érguments,-the:intermediafe fempefature-.

. _beam can be defined for_tﬁe.case'thﬁti' L

16

| (58)_.:  ;i.}

.mrd



(60)

3
nj
o=l
<’:
q
i

o

Aﬁaiysis of the dispéfsion equation in this situation is, in general,

more difficult than for the cases of high— or low beam temperature.  We
will discuss some cases where reasonably good analytic approx1mat10nb are
obtained. ' '

1. -‘High—Frequency:Waves (wl;a wp)

~ For the case of a weak beam (wp >> W ), the cold-beam solution

"holds. To show this from Eq. (45) is obtained

-
| /3 R

[ Ko
[V}
L]

¥ & 0,49 |

ﬁE
ol

U‘EI\D
[ I

b wad

which is greater than'unity for the weak-beam assumption, provided that
. {(60) holds,. Hence, the asymptotic expansion used to derlve Eq. (45)

still holds, so that for the- 1ntermed1ate-temperature beam the high

.frequency solutions are the same as for the low-temperature beam:

1/3

: e N Y X" _

@ oy v, - E(ED s
- o 172

b)) vy ='(Z) B e Y ¢ A

'2..; Low-Frequenoy Waves (wl <<‘wp)_'

lnw—frequéncy wave solutions can be obtainedifor the;special'

_case




:upu : o
LB < :
5oy~ L . (62)
b o _ :
Withethe.following assumptiens,
: . <<.
(a) N wp
() ©, v<<w - S )

27 VS
o W '

'the arguments leading from Eq. (47) to Eq. (52) can be repeated for this

case whlch lead to the approx1mate results

14 XX - yY 5> ~ (xX + yY) S (e4)
and .
, S B ) u\” . . - . _ . oL E
1+ xX - yY = wpv Sl (e

On examination of the functions (1 + xX - yY) and (xY +fyX), it is noted-
that (for y > 0) Egs. (64) and (65) can be Satlsfled only under the con-

d1t10ns :

. and under these condltlons a series. expan51on glves the approx1mate re-.

latlon

* L L ' : ' T R o L
. See,_for.example, the_tables_and_plotted results of Ref. 4.
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_Slmllarly, for the case v >> wz

Ll xX - yYal-qfTy b2y . : - 687

Using this expansion in Eg. (65),. we obtain

(68)

For. the numerical work, an estimate of x is also reguired. For v. << @

o2
Egs. (49) and (65) glve

X+ yXa -2 2B ) N )

 Expand1ng the left-hand side of Eq (69) in a power séries gives,

approximately,

»

‘XY + yX = x(jf ™ - 4Y) o :.:1 SR (70)-5ﬁ: )

80 that.

» _one obtains

19



The numerical results indicate that the estimates of Eqs. (68),

cand (71) or (72) give close Tirst guesses for the cases

P2 _5.9, 0.09 . ' @3
v .
b o : :

' ‘On_the other hand, these estimates do not hbld for the case

. o | 3 N
EE = 1. 7 o (74) .
b : . .

o

The numerical results obtained'for_this last'case were obtained by trial

and error.

D. - Summary of Apprdximate Solutions

‘In Table I are summarized the approkimate solutions obtained in the

previous sections.

20
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Table I

. TABLE OF APPROXIMATE SOLUTIONS OF ‘THE I)I.SPEIKS ION EQUATION

mp u
T =
. W
: bvo
i%eam ) . . u ‘
Temperature Wy x . ) w, = \H 2 (kVO)("‘;,:> ¥ Comments
1 1 -2 " 7p
W, == - - <L e
1% 2 %" v 2c 2
o 7 %
I - e - Lo 0 T p
Tl el N YA . W =0 . VEN 2 3
W - - <
% W, <0

B . _ _ w \2/3 e T
' o b _ :
0 W _y/'\/—? _ -\[3 o, (—---4wp) o W, >> v

N o _ : 3,374 wi 1/2 : :
I - ~ @~ y/af : 2). — . ,
e _ \ ey sy 3: . (4) W, o) . _ v >,
<< 1
"wP‘ h g "EE(kV) : I vy
v ¥ : w o . : 9
- o _ g
<«
Bl Tw o
b o : S
- = <y < w
Zavy ¥ g V) e Cfw, v <
; A N _
2/3

Wy oy y/f 3 o -\/_:a' wp Cur-wp . o - o w, ?> v

s : o : '3/4 "’bz 1/2 _ A T
1 Wp y/}f 3 . (4) Fup quv S » v.>> W,
TI1

o << W l- 2 uo___ Ty ' ST -
: 1<% ’y Ty . By > v
| : - (N 2'\ .

Vv T L : .
W< - - . S ) _ _
L5 % TR A ' Ty
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*
IV NUMERICAL. PROGRAM

.'A. ~ Methed

The numerical results bresented in this report were obtained by an
application of the Method of False Position® (Regula Falsi) to the com-
' plex plane.- The only Justlflcatlon offered for thlS approach is.that 1t
was the most ‘successful of a number -of approaches tried. In earlier .
work a Newton's method was employved with limited success, the success
depending to a large-extent upon where in the complex z-plane the solu-

tion lay.

_The.Method of False Position can be described briefly.as follcws: '

for a given set of beam-plasma parameters, Eq. (8) can be written -

ui wi | | .
£(2) =1 - G+ iy 2,2 [1+zz2] o (7'5)_

where we'eeek az such that
£z =0 . . o (76>

The procedure is to make an initial guess Zgs and determine
Z, = % (l +¢), where e << 1. Ve then calculate the sequence Z for

-n =1, 2, ceey accordlng to the relat1on

~ o - f(zo)'[zo - zn] L
_.n+l_ : c | f(zo).j_fgzn} L

)

. _ . _ | | _ _ k SRR ;

~ The method of solution and the programming of this problem are due to -
. the efforts of Mr. Len McCulley of the Mathematical. Sciences Department.'
The program was wrltten in BALGOL for a Burroughs 220 computer



ThE_Sequence'is stopped when the absolutce value Izn+l'_ z is less than
some predetermined small value. The function Z(zn) is calculated along

the way.

B. ~Numerical Results

Machine calculations for the’growth rate were carried out for.

several values of plasma and beam plasma frequency as shown:

) @, 1012 | 1™ | 102 10t
w 10° 108 108 10°

For each case, the calculatlons were. carried out for bean temperatures

as shOWn'

[T
p °

W
b

Tl 0.1 [ 09| 099 | 1.0 | 10.0 |
TER | o

The results_cf.theseicelcuigtione;are shown in Figs. 1-4, where the
”growth_rate of the instabilityiis plotted as a function of kv z:wl;
R The p01nts connected by solld llnes in Flgs. 1 4 are obtalned for
a colllslon frequency Vo= 105}_ Results obtalned for colllslon fre-

E quencies 107-and ld'-are essentially the same as for the case Vv = 105_
except at lower frequenc1es where the growth rate tends to be enhanced
. by collisions. These results are shown roughly by the dashed branch

.lines 1n Flgs. 1-4,

For high beam temperature T = 10 the growth- rate is found to have
.8 maximum .in the v101n1ty of the plasma frequency, wp._ The-maxlmum'

Tgrowth rate as determlned numerlcally was found to- be in close agreement _

R



with the theoretical results of Eq. (37)._'lt should bernoted that the
“maximum growth rate for the high- tcmperature case 1is not slgnlflcantly
'_lEbS than the low-temperature growth rate for any of the cases consldcred
here. . For wave frequencies slightly greater or less than the maximum,
the growth'réte'drops quite rapidly to a condition of damped waves.

. These results are indicated by a solid vertical line in Figs. 1-4n

Numerical results for the effect of c011151onal damplng in the
hlgh temperature 1imit are shown below. Here, v* is the minimum value
of collision frequency for whlch wave damping is obtained. These re-

sults are obtained for the condition T = 10, as follows:.

4 " . :
.wp, 0 1012-,- 109 "'1_011, 108 101-2, 108 1011, 10°
T V¥ o 0.73 - | 0.73 C0.71 0.61

.From the approximate_theory leading to Egq.-(28) is obtained

\v] E

vk = 0.76 . .

BE'%'
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"~ V- CONCLUDING REMARKS

. If stability with respect to electrostatic.waves is defined in terms
.of the high-temperature limit, 7 >> 1, one sees two opposing influences
.when comparing relativistic and non- relat1v1st1c beams. - That is; since

the hlgh temperature llmit is deflned by

p
T = e >> 1
TR,
. where .
1
5 [P\ a2
Rl _
b 2

_ then the.cohditioh for stability can be writfen

1
n \2
T 2 2 1Y3/2'>> 1 .
n { \v : :
X b O

.'It is evident from'the .above inequality.thet for givec.ﬁlasma and beam
'"partlcle densxty, the product of the beam veloclty spread u and the
relat1v1st1c factor Y 3/2 is 1mportant in satisfylng the 1nequallty.
Thus ‘in g01ng to relat1v1st1c velocltles At becomes dlfflcult to achleve
.'_a large veloclty spread although thls is counteracted to some extent by

_' the 1arger relat1v1st1c factor

e dd
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